28 resultados para VERTEBRATES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vertebrates, efficient gas exchange depends primarily on establishment of a thin blood-gas barrier (BGB). The primordial air conduits of the developing avian lung are lined with a cuboidal epithelium that is ultimately converted to a squamous one that participates in the formation of the BGB. In the early stages, cells form intraluminal protrusions (aposomes) then transcellular double membranes separating the aposome from the basal part of the cell establish, unzip and sever the aposome from the cell. Additionally, better endowed cells squeeze out adjacent cells or such cells constrict spontaneously thus extruding the squeezed out aposome. Formation of vesicles or vacuoles below the aposome and fusion of such cavities with their neighboring cognates results in severing of the aposome. Augmentation of cavities and their subsequent fusion with the apical plasma membranes results in formation of numerous microfolds separating concavities on the apical part of the cell. Abscission of such microfolds results in a smooth squamous epithelium just before hatching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conservation strategies for long-lived vertebrates require accurate estimates of parameters relative to the populations' size, numbers of non-breeding individuals (the “cryptic” fraction of the population) and the age structure. Frequently, visual survey techniques are used to make these estimates but the accuracy of these approaches is questionable, mainly because of the existence of numerous potential biases. Here we compare data on population trends and age structure in a bearded vulture (Gypaetus barbatus) population from visual surveys performed at supplementary feeding stations with data derived from population matrix-modelling approximations. Our results suggest that visual surveys overestimate the number of immature (<2 years old) birds, whereas subadults (3–5 y.o.) and adults (>6 y.o.) were underestimated in comparison with the predictions of a population model using a stable-age distribution. In addition, we found that visual surveys did not provide conclusive information on true variations in the size of the focal population. Our results suggest that although long-term studies (i.e. population matrix modelling based on capture-recapture procedures) are a more time-consuming method, they provide more reliable and robust estimates of population parameters needed in designing and applying conservation strategies. The findings shown here are likely transferable to the management and conservation of other long-lived vertebrate populations that share similar life-history traits and ecological requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toll-like receptors are pattern recognition receptors with which hosts recognize pathogen-associated molecular patterns (PAMP). This recognition process is translated rapidly into a meaningful defense reaction. This form of innate host defense is preserved in the animal kingdom: invertebrates heavily depend on it; higher vertebrates also have an adaptive immune system. Both adaptive and innate immune systems are intertwined in that the former also depends on an intact innate recognition and response system. Members of the TLR system cover recognition of parasitic, bacterial or viral germs. Due to the constraints imposed by the necessity to recognize PAMP and to interact with downstream signaling molecules, the TLR system is relatively conserved in evolution. Nevertheless, subtle species differences have been reported for several mammalian TLR members. Examples of this will be given. In all mammalian species investigated, part of the coding sequence is available for the most important TLR members, thus allowing study of expression of these TLR members in various tissues by reverse-transcription polymerase chain reaction in its classical (RT-PCR) and quantitative real time RT-PCR (qRT-PCR) form. In some species, the whole coding sequences of the most important or even all TLR members are known. This allows construction of cDNA and transfection of common host cells, thus permitting functional studies. Extensive investigations were devoted to the study of non-synonymous single nucleotide polymorphisms. In a few cases, expression of a given amino acid in the extracellular (ligand-binding) portion of TLR members could be associated with infectious diseases. This will be discussed below.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notochordal cells and nucleus pulposus cells are co-existing in the intervertebral disc at various ratios among different mammalians. This fact rises the question about the interactions and the evolutionary relevance of this phenomenon. It has been described that these relatively large notochordal cells are mainly dominant in early lifetime of all vertebrates and then differences occur with ageing. Human, cattle, sheep, and goat lose the cells with age, whereas rodents and lagomorphs maintain these throughout their lifetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a consequence of the deleterious effects of parasites on host fitness, hosts have evolved responses to minimize the negative impact of parasite infection. Facultative parasite-induced responses are favoured when the risk of infection is unpredictable and host responses are costly. In vertebrates, induced responses are generally viewed as being adaptive, although evidence for fitness benefits arising from these responses in natural host populations is lacking. Here we provide experimental evidence for direct reproductive benefits in flea-infested great tit nests arising from exposure during egg production to fleas. In the experiment we exposed a group of birds to fleas during egg laying (the exposed group), thereby allowing for induced responses, and kept another group free of parasites (the unexposed group) over the same time period. At the start of incubation, we killed the parasites in both groups and all nests were reinfested with fleas. If induced responses occur and are adaptive, we expect that birds of the exposed group mount earlier responses and achieve higher current reproductive success than birds in the unexposed group. In agreement with this prediction, our results show that birds with nests infested during egg-laying have (i) fewer breeding failures and raise a higher proportion of hatchlings to hedging age; () offspring that reach greater body mass, grow longer feathers, and hedge earlier, and (iii) a higher number of recruits and first-year grandchildren than unexposed birds. Flea reproduction and survival did not differ significantly between the two treatments. These results provide the first evidence for the occurrence and the adaptiveness of induced responses against a common ectoparasite in a wild population of vertebrates. [References: 50]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signaling molecules of the Wnt gene family are involved in the regulation of dorso-ventral, segmental and tissue polarity in Xenopus and Drosophila embryos. Members of the frizzled gene family, such as Drosophila frizzled-2 and rat frizzled-1, have been shown encode Wnt binding activity and to engage intracellular signal transduction molecules known to be part of the Wnt signaling pathway. Here we describe the cloning and characterization of Fritz, a mouse (mfiz) and human (hfiz) gene which codes for a secreted protein that is structurally related to the extracellular portion of the frizzled genes from Drosophila and vertebrates. The Fritz protein antagonizes Wnt function when both proteins are ectopically expressed in Xenopus embryos. In early gastrulation, mouse fiz mRNA is expressed in all three germ layers. Later in embryogenesis fiz mRNA is found in the central and peripheral nervous systems, nephrogenic mesenchyme and several other tissues, all of which are sites where Wnt proteins have been implicated in tissue patterning. We propose a model in which Fritz can interfere with the activity of Wnt proteins via their cognate frizzled receptors and thereby modulate the biological responses to Wnt activity in a multitude of tissue sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocrine-disrupting compounds (EDCs) are widespread in the aquatic environment and can cause alterations in development, physiological homeostasis and health of vertebrates. Zebrafish, Danio rerio, has been suggested as a model species to identify targets as well as modes of EDC action. In fact, zebrafish has been found useful in EDC screening, in EDC effects assessment and in studying targets and mechanisms of EDC action. Since many of the environmental EDCs interfere with the sex steroid system of vertebrates, most EDC studies with zebrafish addressed disruption of sexual differentiation and reproduction. However, other targets of EDCs action must not be overlooked. For using a species as a toxicological model, a good knowledge of the biological traits of this species is a pre-requisite for the rational design of test protocols and endpoints as well as for the interpretation and extrapolation of the toxicological findings. Due to the genomic resources available for zebrafish and the long experience with zebrafish in toxicity testing, it is easily possible to establish molecular endpoints for EDC effects assessment. Additionally, the zebrafish model offers a number of technical advantages including ease and cost of maintenance, rapid development, high fecundity, optical transparency of embryos supporting phenotypic screening, existence of many mutant strains, or amenability for both forward and reverse genetics. To date, the zebrafish has been mainly used to identify molecular targets of EDC action and to determine effect thresholds, while the potential of this model species to study immediate and delayed physiological consequences of molecular interactions has been instrumentalized only partly. One factor that may limit the exploitation of this potential is the still rather fragmentary knowledge of basic biological and endocrine traits of zebrafish. Information on species-specific features in endocrine processes and biological properties, however, need to be considered in establishing EDC test protocols using zebrafish, in extrapolating findings from zebrafish to other vertebrate species, and in understanding how EDC-induced gene expression changes translate into disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquatic toxicology is facing the challenge to assess the impact of complex mixtures of compounds on diverse biological endpoints. So far, ecotoxicology focuses mainly on apical endpoints such as growth, lethality and reproduction, but does not consider sublethal toxic effects that may indirectly cause ecological effects. One such sublethal effect is toxicant-induced impairment of neurosensory functions which will affect important behavioural traits of exposed organisms. Here, we critically review the mechanosensory lateral line (LL) system of zebrafish as a model to screen for chemical effects on neurosensory function of fish in particular and vertebrates in general. The LL system consists of so-called neuromasts, composed of centrally located sensory hair cells, and surrounding supporting cells. The function of neuromasts is the detection of water movements that is essential for the fish's ability to detect prey, to escape predator, to socially interact or to show rheotactic behaviour. Recent advances in the study of these organs provided researchers with a broad area of molecular tools for easy and rapid detection of neuromasts dysfunction and/or disturbed development. Further, genes involved in neuromasts differentiation have been identified using auditory/mechanosensory mutants and morphants. A number of environmental toxicants including metals and pharmaceuticals have been shown to affect neuromasts development and/or function. The use of the LL organ for toxicological studies offers the advantage to integrate the available profound knowledge on developmental biology of the neuromasts with the study of chemical toxicity. This combination may provide a powerful tool in environmental risk assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution.